Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors

Jason H. Karp, Eric J. Tremblay and Joseph E. Ford

Photorics Systems Integration Lab
University of California San Diego
Jacobs School of Engineering

June 8, 2010
Rethink solar concentrator design to leverage large scale manufacturing techniques such as optical lithography and roll-to-roll processing.
Planar Micro-Optic Concentration

- Multiple sub-apertures couple to common output
- Homogeneous output intensity
- Uniform thickness (roll-to-roll fabrication)

- Reflective prisms tilt light to TIR
- Couplers occupy <<1% of waveguide surface
- Subsequent interaction decouples as loss
Design Tradeoffs

Field Displacement: Sun subtends ±0.25°

- Short focal length → **small coupling area**
- Long focal length → **easier TIR condition**

Waveguide Thickness:

\[C_{\text{flux}} = \frac{\text{Slab Length}}{\text{Slab Thickness}} \times \text{Efficiency} \]

- Thin waveguide → **high concentration**
- Thick waveguide → **increased efficiency**
Zemax Non-Sequential Model
- Lens aberrations
- Polychromatic illumination
- Material dispersion
- Coatings and surface reflections

Includes single layer MgF$_2$ AR coating (@545nm) on lens array surface

UCSD Photonics

Fabrication process: Self-alignment

Critical Alignment Tolerance
• Lens focus must overlap with each coupling location
 • <50μm lateral alignment tolerance
 • <0.01° (0.2mrad) rotational alignment

Solution: Self-alignment
• Mold prism structure in UV-curable photopolymer
• Expose through lens array to define coupling regions
• Cured regions remain part of the final device

Low-cost manufacturing process
Continuous roll processing on flexible or rigid substrates
1st Generation Proof-of-Concept

- **Lens Array**: *Fresnel Technologies*
 - F/1.1 hexagonal lens array
 - UVT acrylic

- **Waveguide**: *Fisher Scientific*
 - Microscope slide (75mm x 50mm)
 - BK7 float glass

- **Molding Polymer**: *MicroChem Corp*
 - SU-8 Photoresist
 - Chemical and thermally resistant

- **Prism Mold**: *Wavefront Technologies*
 - 120° symmetric prisms
 - 50μm period, 14.4μm deep
1st Generation System

- F/1.14 plano-convex lens array
 - Strong spherical aberration
 - Gaps between elements

Predict low efficiency due to lens performance and fill-factor
Fabricated Couplers

Al-coated prism facet

Transparent glass slab

75mm

50mm

2.3mm

4.0mm

50µm

200µm

20µm Depth
1st Generation System Testing

37.5x concentration (2 outputs)
- 44.8% Simulated efficiency
- 32.4% Measured efficiency
- ±1.0° angular acceptance

TWO-DIMENSIONAL CONCENTRATION
(ORTHOGONAL CONCENTRATION)
Orthogonal Concentration

- Optical efficiency depends on geometric concentration
 - Long path lengths → additional decoupling and absorption losses
 - High concentration systems require long waveguides

Radial coupling
- Orient couplers to direct light towards a limited output region
- No change in optical path length → minimizes efficiency decrease
- Single output
Radial Concentration Performance

Back Reflector
- Mirror curvature lies normal to incident rays

V-Trough
- Confines lens array divergence

Up to 5x concentration
- 20% less propagation loss
- Extra mirror reflection
 (reduced efficiency at low concentration)
- V-trough angle
 (light rejection from multiple reflections)
2nd Generation System

1st Generation Prototype

- F/1.1 plano-convex array
 - Spherical aberration
 - Gaps between lenses
- Coupler deformation

32.4% optical efficiency

2nd Generation Prototype

- F/3.01 plano-convex array
 - Near diffraction-limited
 - 100% fill-factor
- PDMS master mold
 - Porous to SU-8 solvent
 - Consistent molding
2nd Generation Prototype

- **F/3.01 plano-convex lens array**
 - 1.0mm lens pitch
 - 39μm coupling regions (±0.25°)

Comparative decoupling losses
- No AR coatings

Optimized
- 2.38 mm

1stGen
- 2.29 mm
- F/2.45
 - 78μm spot

2nd Gen
- 1.0 mm
- F/1.14
 - 195μm spot
- F/3.01
 - 39μm spot

23μm (On-axis)

Optimized
- 76.2% @ 37.5x

2nd Gen

1st Gen

Geometric Concentration Ratio

Optical Efficiency
2nd Generation Couplers

- Well-defined coupling regions
 - Less lens aberration
- 83% measured aluminum reflectivity
 - 92% expected reflectivity
2nd Generation Prototype Performance

37.5x concentration (2 outputs)
- 76.2% Simulated efficiency
 - 65.6% (83% Al-coating)
- 52.3% Measured efficiency
- ±0.38° angular acceptance

Xe arc lamp solar simulator

Video: Lateral alignment / misalignment effect
Radial Concentrator Prototype

- Approximate radial coupling with 3 segments
- 2.5x orthogonal concentration

Fresnel Mirror (backside)

71x concentration
(1 output)
- 54.7% Simulated efficiency
 - 83% Al reflectivity
- 25.7% **Measured efficiency**
 - Loss from residual metal

Output
Efficiency Improvements

1. Increase mirror reflectivity
 - Aluminum alloys, silver, dielectric

2. Improve liftoff process (eliminate unexposed regions)

3. Reflector adhesion – edges peel during development
 - Currently using central region of oversized couplers
 - Explore other photopolymers

4. Reduce prism pitch
 - Eliminate sidewall leakage

Reflector Adhesion

Prism Pitch Losses
Summary and Future Directions

In Summary:
• Planar micro-optic concentration
 – Segmented primary aperture with fewer PV cells
 – Reduced optical volume
• Lithographic fabrication supports large-scale manufacture
 – Roll or batch processing (similar to flat-panel televisions)
• Orthogonal concentration through radial coupling
 – Increase concentration ratio without additional decoupling loss

Future Directions:
• Integrate prototype with multijunction PV cells
• Arc-shaped couplers for increased angular acceptance
• Planar micro-tracking
 – Lateral translation can collect off-axis sunlight
This research is supported by:

National Science Foundation (NSF), Small Grants for Exploratory Research (SGER) program

California Energy Commission (CEC), Energy Innovations Small Grant (EISG) program

Thank You

jkarp@ucsd.edu

http://psilab.ucsd.edu