Micro-Optic Solar Concentration and Next-Generation Prototypes

Jason H. Karp, Eric J. Tremblay and Joseph E. Ford

Photonics Systems Integration Lab

University of California San Diego Jacobs School of Engineering

June 23, 2010

Solar Collection: 80 years of progress

Rethink solar concentrator design to leverage large scale manufacturing techniques such as optical lithography and roll-to-roll processing

Design Tradeoffs

UCSD Photonics

6/28/2010

V Planar Micro-Optic Concentration

UCSD Photonic

Optimized Designs

UCSD Photonics

Zemax Non-Sequential Model

- Lens aberrations
- Polychromatic illumination
- Material dispersion
- Coatings and surface reflections

J. H. Karp, E. J. Tremblay and J. E. Ford, "Planar micro-optic solar concentrator," Optics Express, Vol. 18, Issue 2, 1122-1133 (2010).

6/28/2010

Fabrication process: Self-alignment

Critical Alignment Tolerance

- Lens focus must overlap with each coupling location
 - <10µm lateral alignment tolerance</p>
 - <0.01° (0.2mrad) rotational alignment</p>

Solution: Self-alignment

- Mold prism structure in UV-curable photopolymer
- Expose through lens array to cross-link localized prisms
- Cured regions remain part of the final device

UCSD Photonic

Coupling features created by exposing through lenses

Low-cost manufacturing process

Continuous roll processing on flexible or rigid substrates

1st Generation Proof-of-Concept

UCSD Photonics

- Lens Array: Fresnel Technologies
 - F/1.1 hexagonal lens array
 - UVT acrylic
 - Strong Aberrations Not Ideal
- Waveguide: Fisher Scientific
 - Microscope slide (75mm x 50mm)
 - BK7 float glass
- Molding Polymer: MicroChem Corp
 - SU-8 Photoresist
 - Chemical and thermally resistant
- Prism Mold: Wavefront Technologies
 - 120° symmetric prisms
 - 50µm period, 14.4µm deep

1st Generation Proof-of-Concept

Cu

dit

20µm Depth

Concentrator Edge - Aligned

Calibrated detector

Alignment stage

Illuminated prototype

> ±0.25° Illumination

37.5x concentration (2 edges) – 44.8% Simulated efficiency – 32.4% Measured efficiency – ±1.0° Angular acceptance

2nd Generation Prototype

1st Generation Prototype

- F/1.1 plano-convex array
 - Spherical aberration
 - Gaps between lenses
- Large couplers + Annulus

32.4% optical efficiency

2nd Generation Prototype

- F/3.01 plano-convex array
 - Near diffraction-limited
 - 100% fill-factor
- PDMS master mold
 - Consistent SU-8 molding

2nd Generation Prototype

UCSD Photonics

2nd Generation

2nd Generation Prototype Performance

UCSD Photonic

Video: Lateral alignment / misalignment demonstration

NEXT-GENERATION CONCEPTS

- Secondary Coupling
- Orthogonal Concentration

Secondary Coupler

Étendue: entrance pupil x acceptance angle remains constant – Decrease output aperture → Increase output angles

Waveguide Output

- Only lenses modify ray angles
 - Planar waveguide cannot further concentrate
- Lens divergence biased at ±30°
- Waveguide NA limits extreme ray angles

Secondary Coupler

UCSD Photonics

Étendue: entrance pupil x acceptance angle remains constant – Increase output angles → Decrease output aperture

Secondary Coupler

- Opposing waveguide outputs
- PV cell placed below coupler

Increase Angular Spectrum

PV Cell

- Increased 'cone of light' at PV cell
- Reduced cell area

Provides 3.6x additional concentration

Concentration with Secondary Coupling

C_{geo} = Waveguide Length / 2xThickness - Increase flux by extending length

Reduce propagation losses

- Shorter waveguides + secondary coupler

Orthogonal Concentration

Radial prism orientation couples light towards limited output

– No change in optical path length \rightarrow 20% less propagation loss

Up to 5x additional concentration

Retroreflecting mirror + V-trough sidewalls

Secondary coupler enables high efficiency at >500x

Radial Concentrator Assembly

High Concentration Module

J. Karp, E. Tremblay, and J. Ford, "Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors," Optics for Solar Energy, OSA, paper STuD2 (2010).

Summary and Future Directions

- Micro-optic concentration
 - Lens array + Waveguide
- High efficiency and high flux
 - Demonstrated 52.3% efficiency
 - Potential 87.7% at 300x (w/ secondary)

Tracking Methods

1) Lateral Micro-tracking

Spectral Separation

2) Tilt–Roll Platform

Animation created by Katherine Baker

This research is supported by:

National Science Foundation (NSF), Small Grants for Exploratory Research (SGER) program

California Energy Commission (CEC), Energy Innovations Small Grant (EISG) program

Thank You

jkarp@ucsd.edu

http://psilab.ucsd.edu