Radial Coupling Method for Orthogonal Concentration within Planar Micro-Optic Solar Collectors

> Jason H. Karp, Eric J. Tremblay and Joseph E. Ford

Photonics Systems Integration Lab

University of California San Diego Jacobs School of Engineering

OSA

June 8, 2010

Solar Collection: 80 years of progress

Rethink solar concentrator design to leverage large scale manufacturing techniques such as optical lithography and roll-to-roll processing

V Planar Micro-Optic Concentration

UCSD Photonic

Design Tradeoffs

UCSD Photonics

7/16/2010

Optimized Designs

UCSD Photonics

Zemax Non-Sequential Model

- Lens aberrations
- Polychromatic illumination
- Material dispersion
- Coatings and surface reflections

J. H. Karp, E. J. Tremblay and J. E. Ford, "Planar micro-optic solar concentrator," Optics Express, Vol. 18, Issue 2, 1122-1133 (2010).

7/16/2010

Fabrication process: Self-alignment

Critical Alignment Tolerance

- Lens focus must overlap with each coupling location
 - <50µm lateral alignment tolerance</p>
 - <0.01° (0.2mrad) rotational alignment</p>

Solution: Self-alignment

- Mold prism structure in UV-curable photopolymer
- Expose through lens array to define coupling regions
- Cured regions remain part of the final device

UCSD Photonic

Coupling features made by exposure through lenses

Low-cost manufacturing process

Continuous roll processing on flexible or rigid substrates

1st Generation Proof-of-Concept

UCSD Photonics

- Lens Array: Fresnel Technologies
 - F/1.1 hexagonal lens array
 - UVT acrylic

- Waveguide: Fisher Scientific
 - Microscope slide (75mm x 50mm)
 - BK7 float glass
- Molding Polymer: MicroChem Corp
 - SU-8 Photoresist
 - Chemical and thermally resistant
- Prism Mold: Wavefront Technologies
 - 120° symmetric prisms
 - 50µm period, 14.4µm deep

- F/1.14 plano-convex lens array
 - Strong spherical aberration
 - Gaps between elements

Predict low efficiency due to lens performance and fill-factor

160µm (On-axis)

7/16/2010

Fabricated Couplers

UCSD Photonics

1st Generation System Testing

37.5x concentration (2 outputs)
-44.8% Simulated efficiency
-32.4% Measured efficiency
-±1.0° angular acceptance

J. H. Karp, E. J. Tremblay and J. E. Ford, "Planar micro-optic solar concentrator," Optics Express, Vol. 18, Issue 2, 1122-1133 (2010).

7/16/2010

TWO-DIMENSIONAL CONCENTRATION (ORTHOGONAL CONCENTRATION)

Orthogonal Concentration

- Optical efficiency depends on geometric concentration
 - Long path lengths \rightarrow additional decoupling and absorption losses
 - High concentration systems require long waveguides

UCSD Photor

Radial coupling

- Orient couplers to direct light towards a limited output region
- No change in optical path length \rightarrow minimizes efficiency decrease
- Single output

Radial Concentration Performance

Back Reflector

 Mirror curvature lies normal to incident rays

V-Trough

- Confines lens array divergence

Geometric Concentration Ratio

Up to 5x concentration

- -20% less propagation loss
- Extra mirror reflection (reduced efficiency at low concentration)
- V-trough angle

(light rejection from multiple reflections)

1st Generation Prototype

- F/1.1 plano-convex array
 - Spherical aberration
 - Gaps between lenses
- Coupler deformation

32.4% optical efficiency

2nd Generation Prototype

- F/3.01 plano-convex array
 - Near diffraction-limited
 - 100% fill-factor
- PDMS master mold
 - Porous to SU-8 solvent
 - Consistent molding

2nd Generation Prototype

F/3.01 plano-convex lens array

- 1.0mm lens pitch
- 39µm coupling regions (±0.25°)

Comparable decoupling losses

No AR coatings

23µm (On-axis)

7/16/2010

2nd Generation Couplers

1st Gen Coupler

2nd Gen Coupler

- Well-defined coupling regions
 - Less lens aberration
- 83% measured aluminum reflectivity
 - 92% expected reflectivity

2nd Generation Prototype Performance

37.5x concentration (2 outputs)
-76.2% Simulated efficiency
-65.6% (83% Al-coating)
-52.3% Measured efficiency
±0.38° angular acceptance

UCSD Photonic

Video: Lateral alignment / misalignment effect

Radial Concentrator Prototype

Fresnel Mirror (backside)

- Approximate radial coupling with 3 segments
- 2.5x orthogonal concentration

71x concentration

- (1 output)
- 54.7% Simulated efficiency
 - 83% AI reflectivity
- 25.7% Measured efficiency
 - Loss from residual metal

Efficiency Improvements

1. Increase mirror reflectivity

- Aluminum alloys, silver, dielectric

2. Improve liftoff process (eliminate unexposed regions)

- 3. Reflector adhesion edges peel during development
 - Currently using central region of oversized couplers
 - Explore other photopolymers

4. Reduce prism pitch

- Eliminate sidewall leakage

Reflector Adhesion

Summary and Future Directions

In Summary:

- Planar micro-optic concentration
 - Segmented primary aperture with fewer PV cells
 - Reduced optical volume
- Lithographic fabrication supports large-scale manufacture
 - Roll or batch processing (similar to flat-panel televisions)
- Orthogonal concentration through radial coupling

 Increase concentration ratio without additional decoupling loss

Future Directions:

- Integrate prototype with multijunction PV cells
- Arc-shaped couplers for increased angular acceptance
- Planar micro-tracking
 - Lateral translation can collect off-axis sunlight

UCSD Photo

This research is supported by:

National Science Foundation (NSF), Small Grants for Exploratory Research (SGER) program

California Energy Commission (CEC), Energy Innovations Small Grant (EISG) program

Thank You

jkarp@ucsd.edu

http://psilab.ucsd.edu