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We present theory, design, and preliminary experimental studies for a compact wavefront sensor based
on lateral shearing interferometry using a binary phase grating, image sensor, and Fourier-based pro-
cessing. The integrated system places a diffractive element directly onto an image sensor to generate
interference fringes within overlapping diffraction orders. The shearing ratio and the interferogram sig-
nal-to-noise ratio directly affect the reconstruction accuracy of wavefronts with differing spatial varia-
tions. Optimal shearing parameters associated with the autocorrelation of the input encourage placing a
spatial light modulator as the diffractive element allowing adaptive wavefront sensing. Experimental
results from a fixed-grating system are presented as well as requirements for next-generation adaptive
systems. © 2008 Optical Society of America
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1. Introduction

Wavefront sensing describes phase-sensitive detec-
tion from optical path differences (OPDs) within a
field. Optical wavefront sensors are used in metrol-
ogy applications ranging from corrective vision sur-
gery to adaptive free-space communication. All
wavefront sensors map phase information into inten-
sity variations for detection. Several types of system
exist based on their mapping techniques. Phase
shifting interferometry forms a linear intensity pat-
tern on the object surface and scans through a set
phase shifts to visualize the OPD [1]. Shack–Hart-
mann (SH) sensors place a lens array above an image
sensor, resulting in focal-spot position shifts relating
to local wavefront tilt [2]. Lateral shearing interfero-
metry (LSI) overlaps a wavefront with shifted repli-
cas of itself, creating an interferogram with
differential phase contours.
SH sensors have gained significant attention in

the past decade owing to their compact and inte-
grated form factor that lends itself well to practical

devices. Commercial Hartmann masks consist of a
two-dimensional array of lenses to sample the incom-
ing wavefront and focus onto a high-resolution image
sensor. Aberrations such as coma, spherical and as-
tigmatism, as well as tilt and defocus can be calcu-
lated from the spot field and are especially useful
in adaptive-optic feedback loops. However, one must
assume the maximum tilt and spatial frequency of
the aberration when selecting the lenslet and detec-
tor parameters. Spatial variations smaller than the
lens diameter are not sampled. Large local tilts form
focal spots behind adjacent lenses, leading to identi-
fication errors [2]. SH devices can be sensitive to over
λ=20 but place an upper bound on the dynamic range
of the wavefront due to the trade-off defined by the
sensor and lens selection.

Optical interferometry offers exceptional sensitiv-
ity relating to the short wavelength of visible or
infrared light. Twyman–Green and Fizeau interfe-
rometers are commonly used in astronomy and aber-
rometry along with deformable mirrors to
compensate for atmospheric distortions. Traditional
interferometers such as these require strict align-
ment and vibration isolation to produce stable
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fringes, since a reference arm is needed to interfere
with the aberrated wavefront arm [3]. Ronchi first
proposed the use of linear patterns imaged onto mir-
rors to observe phase distortions [4], and this techni-
que is the basis for using LSI as a wavefront sensor.
LSI generates an interferogram by overlapping co-
pies of an identical wavefront with induced lateral
shift and/or tilt. Michelson, Mach–Zehnder, and Sag-
nac interferometers can all be designed for lateral
shearing; however, our focus is on diffractive shear-
ing [5,6]. The self-referenced design inherent to LSI
removes vibration and isolation concerns, since no
planar reference arm is used. This is also a draw-
back. The interferogram embeds phase information
between two unknown signals, thereby requiring
postprocessing and reconstruction algorithms. De-
spite the added computation, adjustable shear mag-
nitude is a degree of freedom inherent to LSI and is
not found in other sensing techniques. This para-
meter can provide varied levels of sensitivity based
on the type and severity of the input aberration, al-
lowing LSI to potentially surpass limitations re-
stricting other wavefront sensing modalities.

2. Integrated Diffractive Shearing

Integrated wavefront sensors are finding uses in a
broad range of new applications because of their abil-
ity to stand alone as a complete system. An inte-
grated system refers to a compact optical setup,
including all devices and sensors, aligned and
mounted in an all-inclusive package. SH devices
are excellent examples of integrated wavefront sen-
sors; but sensitivity trade-offs lead to reduced reso-
lution at certain wavefront aberrations. Our goal
in this work is to explore the design and limitations
of a LSI diffractive wavefront sensor with adjustable
sensitivity to accommodate a wide range of profiles.
LSI first creates replicas of an unknown wavefront

and overlaps them with some shift and/or tilt to form
an interference pattern within the overlapping area.
The contours associated with the fringe pattern dif-
fer significantly as the lateral shear distance
changes, because no known reference phase front
is present. Parallel plate surface reflections and grat-
ing diffraction orders are two methods for generating
the overlapping beam replicas needed for LSI [5].
Gratings can have very high diffraction efficiencies,
thereby using the illumination effectively compared
with surface reflections, and gratings remain the fo-
cus of this work.
Interference fringes occur only in the area of over-

lap, directly relating to the OPD between the points
of intersection. Measuring a two-dimensional field
requires two nonparallel shears, often performed
in orthogonal directions. Fig. 1 depicts several ap-
proaches to shearing along multiple dimensions. A
one-dimensional grating can be physically rotated
between two positions to acquire time-sequential
measurements of the wavefront. Also a pair of ortho-
gonal gratings can produce separated sets of interfer-
ograms that can be analyzed by using multiple

detectors [7]. Multiorder gratings divide wavefronts
into several replicas that simultaneously overlap [8].
The resulting interference provides additional sets of
fringes between nonparallel diffraction orders but re-
duces interferogram contrast and imposes further
sampling constraints. Most interesting is an electri-
cally addressable element such as a spatial light
modulator (SLM) to display gratings of different per-
iods and orientations. This permits shearing varia-
bility within a two-dimensional field. Feedback
increases system sensitivity and dynamic range by
changing the shear on the basis of characteristics
of the wavefront.

The simplest demonstration of an integrated, dif-
fractive interferometer places a fixed grating directly
on the surface of an image sensor. This setup pro-
vides only one-dimensional shearing; however, it is
used to test processing algorithms and identify per-
formance requirements for variable LSI designs. Sec-
tion 3 details the theory behind diffractive shearing
including spectral processing and wavefront recon-
struction steps. Preliminary experimental results
for a fixed grating device are shown in Section 4. Sec-
tion 5 highlights the benefits of variable shearing
and emphasizes the potential gains realized by sub-
stituting a SLM for the fixed grating. Section 6 is
dedicated to the physical specifications and require-
ments of the SLM for an adaptive wavefront sensor.
Concluding remarks are made in Section 7.

3. Description of LSI Method

The amplitude and phase of a general field are
defined by jf ðx; yÞj exp½jϕðx; yÞ�, and a laterally shifted
version can be written as jf ðx − s; yÞj exp½jϕðx − s; yÞ�,
where s is the magnitude of a one-dimensional shift.
The resulting intensity occurring from interference
appears as

Fig. 1. Diffractive elements perform LSI by overlapping diffrac-
tion orders. (a) Information about the wavefront is obtained along
the shearing direction. (b) Two-dimensional gratings simulta-
neously record the entire field while (c) SLMs sequentially create
multiple interferograms.
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gðx; yÞ ¼ jjf ðx; yÞj exp½jϕðx; yÞ�
þ jf ðx − s; yÞj exp½jϕðx − s; yÞ�j2 ð1Þ

and can expressed in the form

gðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos½ϕðx; yÞ − ϕðx − s; yÞ� ð2Þ

with

aðx; yÞ ¼ jf ðx; yÞj2 þ jf ðx − s; yÞj2; ð3Þ

bðx; yÞ ¼ 2jf ðx; yÞjjf ðx − s; yÞj: ð4Þ

The cosine term in Eq. (2) depends on the relative
phase difference between the fields and is the desired
quantity for wavefront sensing. This signal is em-
bedded along with other irradiance variations and
is typically measured with contour mapping in cases
with known reference arms.
Passing the original field through a diffraction

grating causes the light to split into multiple orders,
each being a copy of the original, tilted at an angle θm
defined by the grating equation at normal incidence

sin θm ¼ m
λ
d
; ð5Þ

wherem refers to the diffraction order at wavelength
λ and grating period d. Diffractive replication is use-
ful, since it not only creates lateral separation swhen
allowed to propagate, but also incorporates a modu-
lation frequency f o within the cosine term. This is
due to the linear OPD between the tilted diffraction
orders (Fig. 2). The interference intensity between
diffraction orders α and β is written as

gðx; yÞ ¼ aðx; yÞ
þ bðx; yÞ cos½ϕðx; yÞ − ϕðx − s; yÞ þ 2πf ox�;

ð6Þ

f o ¼
sinðθα − θβÞ

λ : ð7Þ

The spatial variation introduced by f o is typically
fast compared with the terms in Eqs. (3) and (4)
and acts as a carrier frequency for the phase differ-
ence signal. Well-separated peaks appear in the spec-
tral domain, allowing the differential phase
component to be isolated from other intensity varia-
tions [9]. To highlight the phase detection steps,
Eq. (6) is rewritten in the form

gðx; yÞ ¼ aðx; yÞ þ cðx; yÞ expði2πf oxÞ
þ c�ðx; yÞ expði2πf oxÞ; ð8Þ

where

cðx; yÞ ¼ 1
2
bðx; yÞ exp½iϕðx; yÞ − iϕðx − s; yÞ� ð9Þ

and � denotes the complex conjugate. Fourier trans-
formation of Eq. (8) yields Eq. (10), with capital let-
ters referring to the Fourier spectra and ωα the
spatial frequency in the α direction:

Gðωx;ωyÞ ¼ Aðωx;ωyÞ þ Cðωx − f o;ωyÞ
þ C�ðωx þ f o;ωyÞ: ð10Þ

Modulation from the tilted wavefronts is seen as
shifts in the spectrum, allowing the phase measure-
ment to be isolated with a single sideband spectral
filter (Fig. 3). The phase difference signal results
in spectral broadening of the modulation peak and
affects the width of the required filter.

The carrier may be demodulated by shifting the fil-
tered sideband toward the origin. This is viable only
for theoretical, single-frequency carriers and may
lead to residual Fourier components in experimental
scenarios. In practice, the gradient phase measure-
ment is mixed with a reference interferogram ac-
quired by shearing and overlapping a collimated
field [10]. Let cmðx; yÞ represent the complex signal
of the differential phase as seen in Eq. (9) and

Fig. 2. Diffraction angles create a linear fringe pattern within the
interferogram. Wavefront aberrations distort the carrier pattern,
which is spectrally processed.

Fig. 3. Carrier modulation allows the phase difference signal to
be isolated from other illumination components. The spectral
width of the sidebands contains the phase information.
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crðx; yÞ correspond to the complex measurement
formed from shearing a plane wave as a reference
pattern. The phase gradient can be retrieved through
the relation

ϕðx; yÞ − ϕðx − s; yÞ ¼ arctan
�
Refcrðx; yÞgImfcmðx; yÞg − Imfcrðx; yÞgRefcmðx; yÞg
Imfcrðx; yÞgImfcmðx; yÞg þ Refcrðx; yÞgRefcmðx; yÞg

�
; ð11Þ

where Re and Im represent the real and imaginary
components, respectively. The additional reference
measurement is performed only once for a given car-
rier. Mixing is superior to spectral translation be-
cause it removes all frequencies associated with
the carrier, including additional frequencies stem-
ming from illumination aberrations. The signal re-
sulting from Eq. (11) uncovers the differential
phase measurement of the field, wrapped from −π
to π. Care must be taken during phase unwrapping
schemes to avoid streaks emanating from discrete
points of residue [11].
The phase difference is the difference between the

original field and a sheared copy, thereby represent-
ing slope information in the direction of the shear. To
analyze an entire two-dimensional wavefront, shear-
ing and analysis must be performed along two non-
parallel directions. Multidirectional phase
derivatives generated from multilateral shearing
produce additional signals that aid in reconstruction
accuracy, despite adding complexity to the detection
process [8]. Note that the piston term associated with
optical aberrations cannot be detected by using LSI.
Periodic aberrations with identical frequencies to the
carrier are not seen, since no subtraction signal
results.
At this point, slope information about the wave-

front has been extracted from the modulated inter-
ferogram. To estimate the three-dimensional
profile of the wavefront itself, the measured signal
must undergo spatial integration. Several mathema-
tical algorithms based on least-squares fitting and
modal estimation have been proposed for differential
wavefront reconstruction [12–15]. Our implemented
technique is a generalization based on modal estima-
tion methods proposed by Elster and Weingartner
[16,17], which rely on an inverse Fourier filter known
as the shearing transfer function. Let the discrete
phase difference along each orthogonal direction in
an N ×N field be written as

Δϕxðm;nÞ ¼ ϕðm;nÞ − ϕðm − s;nÞ;
m;n ¼ 0; 1; 2;…;N − 1;

ð12Þ

Δϕyðm;nÞ ¼ ϕðm;nÞ − ϕðm;n − sÞ;
m;n ¼ 0; 1; 2;…;N − 1;

ð13Þ

where s is the discrete lateral shear distance in sam-
ples. The shift theorem of Fourier transforms states
that a translation in space introduces a linear phase
shift in frequency [18]:

FTfΔϕxðm;nÞg ¼ FTfϕðx; yÞg
�
1 − exp

�
−

i2πωxs
N

��
;

ð14Þ

FTfΔϕyðm;nÞg ¼ FTfϕðx; yÞg
�
1 − exp

�
−

i2πωys

N

��
:

ð15Þ

The bracketed exponentials in Eqs. (14) and (15) are
known as shearing transfer functions. Dividing the
right-hand side by this term isolates the spectral fre-
quencies of the wavefront profile along each shearing
direction. The final spatial form of the data is recov-
ered with a simple inverse transform.

The shearing transfer function has an inherent
drawback regarding frequency poles occurring at
multiples of N=s, causing the exponential to become
zero. These Fourier components will be lost, but may
be replaced by averaging values from adjacent
points, i.e., letting FTxðm;nÞ ¼ ½FTxðmþ 1;nÞþ
FTxðm − 1;nÞ�=2. Estimating the missing informa-
tion may result in reconstruction error; however, it
is tolerable provided that the shear s does not create
an excessive number of leakage points [19].

The concept of integration over the slope measure-
ment leads to one final point of ambiguity regarding
the size of the overlapping region relative to the size
of the input wavefront. The common area between
the wavefront and its sheared copy is of dimension
ðN − sÞ ×N . The wavefront under test is N ×N. This
dimensional mismatch hinders the direct application
of the shearing transfer function and requires data
preprocessing through a periodicity constraint de-
fined by the periodicity inherent to the exponential
basis functions of the inverse filter. The idea is
known as the natural extension of the difference
function, which was obtained in [16,17].
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Periodicity within the differential wavefront oc-
curs when the summation of each row or column
has a zero sum. Considering the special case where
s is an integer multiple of N, the gradient phase may
be extended by using

Δϕxðm;nÞ ¼ −

XðN=sÞ−1

p¼0

Δϕxðmþ ps;nÞ;

m ¼ 0; 1; 2;…; s − 1; n ¼ 0; 1; 2;…;N − 1;

ð16Þ

Δϕyðm;nÞ ¼ −

XðN=sÞ−1

q¼0

Δϕyðm;nþ qsÞ;

n ¼ 0; 1; 2;…; s − 1; m ¼ 0; 1; 2;…;N − 1:

ð17Þ

For the general case when s is not an integer multiple
of N, similar treatment is still possible by first ex-
tending the measurement data beyond the desired
N ×N size until the constraint is met. Some data in-
terpolation and smoothing is necessary to suitably
meet the above requirement; however, only the solu-
tion within theN ×N interval is retained. The added
ability to utilize any shear distance provides power-
ful insight regarding input aberration types and
noise relationships, which are explored in Section 5.
To summarize the process of wavefront reconstruc-
tion from an arbitrary gradient phase measurement,
the following steps are necessary:

• Impose periodicity via natural extension so
that each row and column of the gradient has zero
sum and N ×N dimensions.
• Fourier transform each array of phase dif-

ferences.
• Perform integration through division with the

shearing transfer function.
• View the reconstructed wavefront by using in-

verse Fourier transformation.

4. Fixed Diffractive Shearing Experiment

The integrated LSI consists of a one-dimensional
binary phase grating mounted directly onto the sur-
face of a CMOS image sensor. The grating has
42 lines=mm and is designed for 1064nm illumina-
tion. Shearing is performed by allowing the �1st dif-
fraction orders to propagate within the 2mm
thickness of the grating substrate. Binary phase pat-
terns are ideal for LSI because of their strong first-
order diffraction and zero-order suppression.
The diffraction orders overlap at the sensor plane

to create 11:2 μm carrier fringes. The carrier must be
sampled at a rate higher than the Nyquist frequency
to avoid aliasing of modulated gradient data. Conver-
sely, dense sampling of the fringe places spectral
sidebands close to the origin, requiring a narrow
spectral filter that may not encompass all gradient
phase spectral components. The carrier should be

sampled so as to provide good separation from the
origin and appropriate bandwidth on both sides of
the spectral peak and avoid aliasing of the modu-
lated data.

A 2 megapixel monochrome CMOS sensor with a
3:2 μm pixel pitch is chosen to detect the interference
pattern formed on its surface. The phase object under
test is a plano-convex lens with a 100mm focal
length. Though 3.5 pixel sampling per fringe period
is within the defined sampling criteria, practical pro-
blems prevent the sensor from accurately identifying
the carrier and distinguishing small deviations in
periodicity. Coherent speckle and moiré are domi-
nant noise sources that corrupt spectral information
when few samples span the carrier. Additionally,
high-order diffraction gives rise to aliased inter-
ference fringes that overlap the carrier frequency,
further hindering detection. The rectangular image
in Fig. 4(a) shows the interferogram captured by
the system in Fig. 4(b), which overfills the sensor
array. Poor carrier modulation and moiré are clearly
seen in Fig. 4(c), which ultimately damage the sensi-
tive phase information.

The system is modified to include a 3:6× magnify-
ing 4F relay to decrease the diffraction angle and
thereby increase the fringe period. The grating is
no longer attached to the CMOS sensor, but instead
resides within the front focus of the relay. The relay
system reduces the dynamic range by shrinking the
usable sensor bandwidth. The modifications can be
avoided by selecting a grating with a slightly larger
pitch or by selecting a higher-resolution sensor to
accommodate both sampling and environmental con-
cerns. The modified system is used solely for verifi-
cation of the processing methods described in
Section 3.

The optical setup in Fig. 5 is used to measure the
radius of curvature of the 100mm focal length, plano-
convex lens. The imager sensor is rotated 60° with
respect to the grating orientation to minimize moiré
between the interference pattern and the pixel array.

Fig. 4. (a) Low sampling and moiré disrupt the carrier modula-
tion seen using (b) an integrated device consisting of a fixed phase
grating and image sensor. (c) Poor detection of the horizontal car-
rier fringes is seen in the magnified view.
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The spherical wavefront emanating from the lens is
captured, reconstructed, and compared with a sur-
face profile measurement performed using an inter-
ference microscope (Fig. 6). The measured radius of
curvature differs by 9.2% and may be attributed to
measuring the phase front just after the lens, and
not directly at the lens plane. Much of the measure-
ment difficulty stems from the small signal gener-
ated from shearing a slowly varying wavefront.
Increasing the lateral shift significantly disrupts
the carrier periodicity, resulting in larger spectral
components that stand out against the background
noise. The impact of the shearing ratio is discussed
in the following section.

5. Shearing Ratio

The lateral shear distance is one adjustable quantity
that separates LSI from fixed wavefront sensing
techniques such as SH. The shearing ratio is defined
as the fractional shift within the normalized field
size. Shearing ratios of 0.01 overlap 99% of the wa-
vefront, while 1.0 creates no common interference
area and provides no gradient information.
The shearing ratio governs a trade-off between

overlapping field size and magnitude of the differen-
tial signal. Large areas of overlap maximize the

number of data points to create an accurate estima-
tion of the wavefront profile by minimizing data ex-
tension. However, since spatial phase variation is
typically slow compared with the sample pitch, the
resulting difference measurement for small shears
is diminutive and difficult to detect, especially in
the presence of noise. Large shearing ratios interfere
substantially separated field points to yield an in-
creased OPD at the cost of a reduced common area.
This scenario requires additional data extension and
increases the likelihood of reconstruction error. The
significance of altering the shear ratio can be seen
visually in Fig. 7, with small shears producing near
periodic fringes, while increasing the shear further
disrupts carrier regularity. The distorted fringes in
Fig. 7(c) contain more Fourier content, which stands
out in noisy environments.

Simulations are performed by using rectangular
data sets versus circular ones for geometric simpli-
city. Sets of Zernike polynomials generate the input
phase profile. These are sheared to form synthesized
interferograms to process under the algorithm de-
scribed in Section 3. Two specific wavefronts are si-
mulated, encompassing the cases of slow phase
changes, Fig. 8(a), and increased spatial variation,
seen in Fig. 8(b). The frequency of spatial variations
is associated with certain aberration types. Spherical
and coma lead to slow changes, while high-order
aberrations cause faster spatial variations.

The spatial autocorrelation of the phase profile is a
measure of similarity between the field and shifted
versions of itself. Autocorrelation is similar to convo-
lution, except it results in the difference between
probability distributions of the signals instead of
the sum. The output measurement is always twice

Fig. 5. Integrated LSI is modified by using a 4F relay with mag-
nification to reduce the diffraction angle from θ1 to θ2 and increase
the carrier period.

Fig. 6. (a) A section of the interferogram captured from the mod-
ified LSI is used to reconstruct the spherical profile. (b) The lens
profile is compared with a phase-shifting microscope.

Fig. 7. OPDs between the sheared points of overlap disrupt
fringe carrier periodicity. Adjusting the shearing ratio from (a)
0.01 to (b) 0.1 and (c) 0.3 increases the difference signal highlighted
in (d), (e), and (f), respectively.
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as large in dimension as the input and is maximal at
the origin. Maps of the autocorrelation are seen in
Figs. 8(c) and 8(d). The distance between the maxi-
mum (origin) and minimum pinpoints the shift that
yields the greatest OPD within the wavefront. The
magnitude and direction of this shift is highlighted
by arrows within the figures. A single shift along
the identified direction maximizes the differential
signal; however, a pair of shears is needed to span
the two-dimensional field. The highlighted vector
is broken down into orthogonal shear components
along the rows and columns. The synthesized wave-
front with slow spatial change has greatest signal
from shears of 0.62 and 0.17 along the rows and col-
umns, respectively. Alternatively, shifts of 0.13 and
0.32 along the rows and columns result in the largest
phase difference when analyzing the wavefront with
increased spatial variation. The autocorrelation map
identifies the optimum shearing ratio based only on
the wavefront profile, ignoring impacts from data ex-
tension and interferogram noise.
To investigate the relationship between shearing

ratios and interferogram noise, white Gaussian noise
is added to each synthesized interferogram prior to
processing. The signal-to-noise ratio (SNR) is com-
puted in decibels as the logarithm of the ratio be-
tween normalized fringe intensity and random
background noise. The added noise affects the con-
trast of the interferogram and coincides with spectral
frequencies of the differential phase data. The root-
mean-square (RMS) error in wavelengths between
the final wavefront reconstruction and the known in-
put is used as the figure of merit.
The profile of the reference wavefront seen in

Fig. 9(a) is sheared by using equal, orthogonal ratios
spanning from 0.01 to 0.7. Gaussian noise is added to
each interferogram to simulate SNRs ranging from
40 to 20dB. The effect on reconstruction is seen in

Figs. 9(b)–9(d). Decreased SNR causes measurement
errors in the gradient, which leads to streaks along
each direction of integration. Ripples manifest from
combining reconstructions along each direction, ad-
versely affecting the overall smooth profile. SNRs
below 10dB completely lose details of the wavefront,
capturing only a rough estimate of the general profile
shape. Simulated SNRs above 30dB exhibit very ac-
curate reconstructions with less than λ=100 error.
The RMS is plotted as a function of shearing ratio
for increasing SNR values in Fig. 10(a). The curves
identify specific shearing values that yield recon-
struction error minimums. At high SNRs, small
shearing ratios yield the lowest reconstruction error.
Small disruptions in fringe periodicity stand out in
the high contrast of the interferogram. As noise
levels rise, error minimums initially appear at
0.12 and more significantly at 0.53 shearing ratios.
These values are slightly less than the shear optima
identified by autocorrelation. Differential signal
strength versus overlap area will have diminishing
returns on error improvement due to increased data
extension. The plots in Fig. 10 are for identical shear
values along both orthogonal directions. Allowing in-
dependent shear magnitudes along the rows and
columns to better model the shift direction identified
by autocorrelation lowers the RMS error by 8.2%
at 20dB.

The second wavefront with increased spatial
variation in Fig. 8(b) is simulated under the same
shearing and noise conditions. Observing the RMS
error versus shearing ratio in Fig. 10(b) yields best
reconstructions at shifts between 0.18 and 0.22.
These values are once again in close agreement with
those determined from autocorrelation. Including
independent shearing along each direction further
reduces the RMS error by 2.3%. The optimal shear
in each scenario is significantly different, suggesting
that reconstruction accuracy exhibits strong depen-

Fig. 8. Autocorrelation maps identify the shift needed for maxi-
mum OPD. (a) Wavefronts exhibiting slow spatial variation pro-
duce (c) large difference signals with large shears while (b)
increased spatial variation requires (d) smaller shifts.

Fig. 9. (a) Simulated reference wavefront sheared and with
Gaussian noise added to the interferogram prior to processing. Re-
constructions from (a) 10dB, (b) 20dB, and (c) 30dB SNRs. A low
SNR loses all profile detail, while a high SNR creates reconstruc-
tions with >λ=100 accuracy.
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dence on the type and frequency of the aberrations
present. A system that can actively change the shear-
ing ratio in response to different input wavefronts
can achieve greater accuracy and dynamic range
over a wide variety of potential input profiles.

6. Variable LSI Sensor

To create variable lateral shearing, the propagation
distance between a fixed grating and sensor can sim-
ply be adjusted, allowing the tilted orders to sepa-
rate. Other implementations vary the rotation
angle between a series of crossed gratings [20,21]
or rely on rotation within Talbot self-imaging to alter
the region of overlap [22]. Mechanical motion and
tight tolerances associated with these techniques
are not ideal for integrated devices.
Alternatively, liquid-crystal spatial light modula-

tors (SLMs) can act as gratings by displaying binary
phase patterns. The grating pitch alters the diffrac-
tion angle and affects the shearing ratio when propa-
gated a fixed distance to the image sensor. SLMs
have been incorporated into phase shifting interfero-
metry systems [23,24] but are yet to find use as dif-
fractive shearers. The main reason is the discrete
pixel pitch, which determines the change in grating
frequency and ultimately the realizable shift in
shearing ratio.
The diffraction angle varies with the sine of the

grating frequency as indicated by Eq. (5) in Section 3.
Small shearing ratios arise from larger grating per-
iods to reduce wavefront tilt, while greater shifts rely
on smaller periods. The discrete pitch of the SLM

also governs the step size between shearing ratios.
A very small pitch is needed for small shearing incre-
ments, as well as to generate larger diffraction
angles needed in high-shearing scenarios. A general
system consisting of a 5mm field propagating 10mm
to the sensor, calls for a 5 μm SLM pitch simply to
switch between ratios of 0.3 and 0.4. To achieve
higher shearing ratios and increased resolution
pushes the pitch closer to 1 μm. Additionally, the
pitch of the image sensor is of concern to properly
sample interferograms with increased carrier fre-
quencies created from larger diffraction angles.

Devices with very small pitches are not currently
available as commercial products. High-resolution
SLMs with 8 μm pixels are used in diffractive
beam splitting; however, they utilize reflective,
liquid-crystal-on-silicon technology [25]. Transmis-
sion-based SLMs are better suited for integrated
LSI devices, but have pixels higher than 25 μm. In-
creasing the propagation distance between the dif-
fractive element and sensor relaxes the pitch
specification by decreasing the need for high diffrac-
tion angles to create large shearing ratios. This ap-
proach affects the incremental step size between
shearing ratios, resulting in coarse shifts that may
not yield the type of variability desired for detecting
high-order aberrations.

Fabrication and packaging improvements need to
be made in order to create addressable phase modu-
lators with pitches below 5 μm at high fill factors to
promote diffraction efficiency. Combining such a de-
vice with a high-resolution image sensor creates an
integrated wavefront sensor with the unique ability
to adapt its shearing parameters based on the incom-
ing phase. Future techniques may involve shearing
within localized regions of a field to provide unprece-
dented levels of dynamic range. The process for iden-
tifying the optimum shearing ratio of an unknown
wavefront may involve preliminary shear measure-
ments and is currently a topic of further investi-
gation.

7. Conclusion

We have designed and simulated an integrated, lat-
eral shearing interferometer comprising a binary
phase grating and CMOS image sensor. Tilt between
overlapping diffraction orders creates a carrier fringe
within the interferogram that provides gradient
slope information. Fourier-based processing is used
to detect and reconstruct the phase profile of the in-
put field.

The magnitude of the lateral shear determines the
points of overlap between the wavefront copies and
directly affects the optical path difference within
the interferogram. Variable shearing enables the
LSI technique to adjust to different types of wave-
front aberration and minimizes reconstruction error.
The SNR and its connection to shearing ratio has
been explored with a clear relationship to the auto-
correlation of the input. The optimum shear differs

Fig. 10. Varying the shear ratio at different SNRs leads to recon-
struction error minimums that depend on the wavefront profile.
(a) Slowly varying wavefronts benefit from large shears, while
(b) smaller shears perform best for increased spatial variation.
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depending on the spatial variation of the wavefront
and noise levels present during detection.
A system incorporating a SLM as a variable dif-

fractive element can adapt the shearing ratio for
maximum sensitivity and dynamic range by chan-
ging the diffraction angle. Consequently, no trans-
mission modulator technology currently offers the
5 μm resolution needed for the desired shear incre-
ment. The added flexibility would allow this LSI sys-
tem to detect high-order aberrations and avoid
resolution–dynamic-range trade-offs inherent to
other integrated wavefront sensors.
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Queries

1. Re. “but have pixels higher than 25 μm,” do you mean “a pitch higher than...” or “pixels larger than...”?
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