Design and Prototype Fabrication of a Neonatal Video Laryngoscope

Katherine Baker and Joseph Ford
University of California, San Diego
Jacobs School of Engineering

Wade Rich and Neil Finer
University of California, San Diego
Medical Center

October 15, 2009
Dr. Neil Finer, Chief of the UCSD Medical Center’s Division of Neonatology, and Wade Rich, Research Coordinator for the Division of Neonatology, approached the Photonic Systems Integration Lab with a collaboration proposal.

- 25,000 extremely low birth weight infants born annually,
- Most require intubation, a difficult / traumatic process for neonates
- Current instruments designed for adults, not infants, esp. not neonates.
- Project goal: Working model of a neonatal video laryngoscope.
85 - 90% of extremely low birth weight infants need intubation.

Intubation requires 3 (average) to 10 tries

Multiple attempts lead to serious risks.

Images from Manual of Emergency Airway Management, ed. Murphy and People’s Daily Online
Our goal was to create a working model *neonatal* video laryngoscope to evaluate the feasibility of a commercial device.

Images are from Karl Storz website, GlideScope website
Blade and Device Constraints

Constraints
• Blade Width
 • 2.5mm by 6.5 mm tip
• Variable Blade Angle
• Image Quality
 • Combination of Imager and Lighting
• Mechanical Properties
 • Strength
 • Heat
 • Texture
We identified a promising camera in the Medigus IntroSpicio CCD Video Camera, with a camera head measuring only 1.8 by 1.8 by 12 mm.
The most elegant solution is a tapered acrylic light pipe acting as the blade.

We make use of a Fraen coupling lens.

Calculated efficiency is just over 50%.
Acrylic blanks are cut at the right aspect ratio.

The edges are sanded, then flame-polished with a hydrogen-oxygen torch.

Blanks are heated to pliability, then stretched to form a taper.
Measured efficiency is 28%, but the LED is bright enough that this is sufficient.

Using an Inova X0 LED flashlight as the handle and light source, we created a working model.
The medical team tested the device on a Premi-Blue Neonatal Simulator (Gaumard).
Final Model
Conclusions and Future Directions

• Neonate anatomy guided our design.
• We met all the constraints of the project.
• Less expensive wafer cameras could be used to reduce cost.
• We would need a sterilizable device to perform a clinical trial
• Further modifications could be made
Thank you

kabaker@ucsd.edu