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UCSD PhotonicsRange finding is application driven
Modern robotic platforms 

• small, mobile, and interact with their 
environment
• require navigation and vision

Design goal
• compact ranging and onboard imaging

Requirements
• small volume
• low power
• minimum cost
• telephoto imaging
• ranging for obstacle avoidance 

and observation

Do commercial options exist that satisfy these requirements?
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Packbot Scout 
(iRobot)

* Coordinated Robotics Lab, robotics.ucsd.edu

iceCube (left) and iHop (right) 
demonstrate unique 
maneuverability with small size 
and low power*

Pointman SUGV
(Applied Research Associates)
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The optical solutions offer ranging without synchronization with imaging

• Imaging and ranging
• aperture/mask
• photogrammetry
• stereo vision
• Moiré
• pattern projection/structured illumination

Numerous range finding methods available  
[ Blais (2003) “Review of 20 years of range sensor development” ]

• Optical ranging
• triangulation
• time-of-flight
• slit scanners
• interferometry

Current range finding solutions
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• Considering range, cost, computational requirements and size eliminates 
commercial options
• However, combination of ranging methods with size appropriate lens would work



UCSD PhotonicsFixed-focus ranging

• Through-the-lens ranging minimizes 
number of detectors, total volume, power 
consumption
• A fixed-focus imager can use the focal 
length to determine range  

Pattern illumination on three objects
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• Laser diode source collocated with imager
• Detector sends images to computer for 
visualization and analysis  

Deep 
depth of 

focus

Narrow 
depth of 

focus
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object

Refractive Lens

10x less length/weight/volume

object

Folded Optic Imager

Annular input aperture
Thickness comparison with 

equivalent conventional camera
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Front Positive

Rear Negative

Propagator/
Aberration correction

Propagator/
Aberration correction

Image

5 mm

Input
aperture

Plane
Reflector

0   deg
3.3 deg

-3.3 deg

Field Angles

8-Fold Optic Design: Single Sided Structure

Fully-packaged prototype
Including USB interface to PC

Imager specifications:
• 38 mm effective focal length 
folded into 5mm track
• 60mm diameter, effective 
circular aperture = 27.3 mm
• Image NA = 0.71
• Back focal length ~0.5mm
• FOV = 0.12 rad
• 1280 x 960 pixel
• F/#eff= 1.40
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[Tremblay (2007) “Ultrathin cameras using annular folded optics”]
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How to assign polarity to blur image?

Asymmetric Pupil Mask

• Pupil mask limits received light rays to a 
trefoil pattern
• Paraxial thin lens simulation verified concept
• Mask added to folded optic simulation
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• Limited depth of field permits larger blur spots at comparable distances away from focus
• Folded optic demonstrates annular blur 

8-Fold
NA=0.71 In focus (2.72 m) +15%-15%

Conventional
Tokina NA=0.5

In focus (2.6 m) +15%-15%
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Resolution chart imaging demonstrates the small depth of field compared to paraxial lens

8-Fold Masked
NA=0.71

In focus (2.72 m) +54%-53%

8-Fold
NA=0.71 In focus (2.72 m) +15%-15%

How to assign polarity to blur image?

Asymmetric Pupil Mask

• Pupil mask limits received light rays to a 
trefoil pattern
• Paraxial thin lens simulation verified concept
• Mask added to folded optic simulation
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Raw image

RGB filter, for red 
intensity and hue

Mean filter, softens 
image by averaging 
with 10x10 pixel 
windows

Center of gravity 
calculated for each 
blob

Radius calculation:
1. CGs are vertices of equilateral 

triangle
2. Measure the pixel distance 

between two CGs
Canny edge 
detector with 
low/high thresholds 
at 5/20
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illuminated 
target

Images taken with structured illumination
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127cm

185cm

Folded Optic Imager

273cm

406cm

598cm
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Experimental Range Data and Simulation Data
R

ad
iu

s 
(m

m
) o

f b
lu

r c
irc

le

Range (m)

Experimental curve matches closely with the numerical simulation performed in Zemax



UCSD PhotonicsCalibration curve and output comparison
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Numerical vs. Experimental Radii of Blur Circle
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Further examination shows deviation of experimental data at large distances
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Conclusions

• The design goal was met. 
•integrated vision and ranging
•low power and volume

• Experimental results followed theory 
except for drift at long ranges (10m+)

• Provides larger blur diameters between 
lens and focal length than paraxial thin lens

Conclusion and future directions

Future directions

• Variable focus lens
• Pupil mask modifications

•Laser wavelength filtering
• Alternative asymmetric mask shapes

• Pattern arrays
• Concentric imagers
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Limitations

Real world demonstrations with ambient 
light caused anomalies in image processing

Range finding most accurate between 
minimum observable range and focal length
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Thank You,
bnadler@ucsd.edu
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Photonic Systems Integration Laboratory, psilab.ucsd.edu
University of California San Diego
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