Range finding using a masked annular folded optic imager

Brett R. Nadler*, Eric J. Tremblay, Jason H. Karp and Joseph E. Ford

Photonic Systems Integration Lab

Thomas Bewley
Coordinated Robotics Lab

University of California San Diego Jacobs School of Engineering

Range finding is application driven

Modern robotic platforms

- small, mobile, and interact with their environment
- require navigation and vision

Packbot Scout (iRobot)

Pointman SUGV (Applied Research Associates)

Design goal

- compact ranging and onboard imaging Requirements
 - small volume
 - low power
 - minimum cost
 - telephoto imaging
 - ranging for obstacle avoidance and observation

iceCube (left) and iHop (right) demonstrate unique maneuverability with small size and low power*

* Coordinated Robotics Lab, robotics.ucsd.edu

Current range finding solutions

Numerous range finding methods available

[Blais (2003) "Review of 20 years of range sensor development"]

- Optical ranging
 - triangulation
 - time-of-flight
 - slit scanners
 - interferometry

The optical solutions offer ranging without synchronization with imaging

- Imaging and ranging
 - aperture/mask
 - photogrammetry
 - stereo vision
 - Moiré
 - pattern projection/structured illumination

- Considering range, cost, computational requirements and size eliminates commercial options
- However, combination of ranging methods with size appropriate lens would work

Fixed-focus ranging

- Through-the-lens ranging minimizes number of detectors, total volume, power consumption
- A fixed-focus imager can use the focal length to determine range

Deep depth of focus

focus

Pattern illumination on three objects

- Laser diode source collocated with imager
- Detector sends images to computer for visualization and analysis

Folded optic lens

object

10x less length/weight/volume

Thickness comparison with equivalent conventional camera

8-Fold Optic Design: Single Sided Structure

Imager specifications:

- 38 mm effective focal length folded into 5mm track
- 60mm diameter, effective circular aperture = 27.3 mm
- Image NA = 0.71
- Back focal length ~0.5mm
- FOV = 0.12 rad
- 1280 x 960 pixel
- F/#_{eff}= 1.40

[Tremblay (2007) "Ultrathin cameras using annular folded optics"]

Fully-packaged prototype Including USB interface to PC

Improved ranging with folded optics

Conventional Tokina NA=0.5

- Limited depth of field permits larger blur spots at comparable distances away from focus
- Folded optic demonstrates annular blur

8-Fold NA=0.71

How to assign polarity to blur image?

Asymmetric Pupil Mask

- Pupil mask limits received light rays to a trefoil pattern
- Paraxial thin lens simulation verified concept
- Mask added to folded optic simulation

Improved ranging with folded optics

In focus (2.72 m) +15%

How to assign polarity to blur image?

Asymmetric Pupil Mask

- Pupil mask limits received light rays to a trefoil pattern
- Paraxial thin lens simulation verified concept
- Mask added to folded optic simulation

Resolution chart imaging demonstrates the small depth of field compared to paraxial lens

NA=0.71

Image processing steps

Raw image

RGB filter, for red intensity and hue

Mean filter, softens image by averaging with 10x10 pixel windows

Canny edge detector with low/high thresholds at 5/20

Radius calculation:

- CGs are vertices of equilateral triangle
- 2. Measure the pixel distance between two CGs

Center of gravity calculated for each blob

Images taken with structured illumination

Calibration curve and output comparison

Experimental curve matches closely with the numerical simulation performed in Zemax

Calibration curve and output comparison

Further examination shows deviation of experimental data at large distances

Conclusion and future directions

Conclusions

- The design goal was met.
 - integrated vision and ranging
 - •low power and volume
- Experimental results followed theory except for drift at long ranges (10m+)
- Provides larger blur diameters between lens and focal length than paraxial thin lens

Future directions

- Variable focus lens
- Pupil mask modifications
 - Laser wavelength filtering
 - Alternative asymmetric mask shapes
- Pattern arrays
- Concentric imagers

Limitations

Real world demonstrations with ambient light caused anomalies in image processing

Range finding most accurate between minimum observable range and focal length

Thank You,

bnadler@ucsd.edu