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Abstract. 

Lens designers routinely use optimization in their everyday practice. Local optimization 

algorithms lead to the nearest minimum. For comprehensive research on lens architecture, 

ZEMAX offers two options for multi-extremum optimization: Global and Hammer. They provide 

a number of solutions depending on the designer’s choice. Both Global and Hammer optimization 

options are stochastic in nature and cannot ensure completeness of the result. In this paper, a new 

deterministic approach for multi-extremum optimization is proposed. Optimal solutions for even 

moderate complexity optical architectures are shown to be located within extended merit function 

valleys. Merit function minimums are separated by saddle points. An effective algorithm to travel 

over these valleys from one local minimum through a saddle point to another minimum is 

proposed. From this new minimum, a new valley is found which leads through another saddle 

point to another minimum and so on. In a finite number of steps, a complete mutually connected 

system of stationary points (minimums and saddle points) are revealed, giving a reasonable 

assurance that the search is completed. 
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Introduction. 

The design space of optical systems is a complicated multidimensional space, comprising of a 

number of optimal solutions (local minimums of the assigned merit function). In early work [1] 

10 such local minimums were found using expert system based optimization even for a simple 

Cooke triplet. This multi-extremum optimization problem attracted close attention from the 

beginning of the computer aided lens design era. A number of effective algorithms were proposed, 

the majority of them stochastic. While they are able to solve the main practical problem, revealing 

a number of minimums, they cannot ensure that all minimums were found. An effective blow-

up/settle-down (BUSD) algorithm was proposed in Ref. [2]. At the first, a local minimum is found 

depending on the user’s choice of the starting point. After that, BUSD forces the design to “blow-

up”, thereby changing the values of the optimization parameters significantly. This is sufficient to 

escape the ‘gravity’ of the already known local minimum and the following local optimization will 

“settle-down” the search to a new one. The direction of “blow-up” step is the direction of Dumped 

Least Square (DLS) [3] method searching for the maximum. In Ref. [4], Optical Research 

Associates announced a global optimization option for their Code V lens design software but did 

not give any details on its operation principals. The described behavior is similar to that which was 
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shown in Ref. [3]. Simulated annealing is another stochastic algorithm, which uses random steps 

at every cycle and accepts all steps which result in a reduction of optimization criterion in addition 

to others with some probability. This tactic prevents the search algorithm from losing solutions in 

the areas separated from the starting point with large values of the merit function [5]. ZEMAX 

commercial software has two multi-extremum optimization options: Global and Hammer 

optimization. Global optimization uses genetic algorithm techniques with fast local optimization 

solutions upgrade [6] with high efficiency. However both options are stochastic and without a 

guarantee that the deepest minimum was found. 

    In Ref. [7], an escape function to the global optimization method was proposed. In this method, 

the first minimum is found with the use of local optimization. This minimum creates a crater in 

the multidimensional optimization space. The special escape function has two adjustable 

parameters and is added to the optimized function in order to fill up the minimum crater, thus 

eliminating any already found minimum from consideration. The next local optimization will lead 

to the next minimum. The problem is finding appropriate values of these two parameters to fill the 

crater smoothly, without creating a new artificial minimum. The authors found several solutions 

to this problem, and in a design example found 50 solutions for their six-elements lens. 

Nevertheless, the exact universal solution for the escape function parameters was not found in this 

paper nor in later developments [8]. It is the first determinative algorithm in the row of proposed 

global optimization strategies. While the initial starting point can be chosen arbitrary, the algorithm 

was designed to sequentially find all minimums. 

In the recent years, promising results were reported in the systematic search of minimums for 

multi-extremum optimization of optical systems by consequent search of a new minimum through 

the closest saddle points [9]. Based on the general topology consideration in Ref. [9], saddle points 

were shown to be points of transition between neighboring minimums. Transitioning between 

minimums includes two general steps: saddle point detection (optimization from the minimum to 

saddle point) and local optimization to a new minimum. In the Ref. [9] such a saddle point 

detection (SPD) algorithm was proposed. Local optimization to a new minimum was not discussed 

in detail, thus was probably conventional. Such methodology gives an opportunity to reveal new 

minimums in a sequential and systematic way. A closed system of minimums mutually bounded 

by saddle points has a high probability that the system is complete. Cooke triplet global 

optimization was reported using this method. Moreover, in Ref. [10, 11] it is shown that in addition 

to the optical system, a neutral null-element creates a new saddle point and can pave the way to 

new minimums. 

However some specific aspects related to optimization of more complex systems are not 

discussed. It is known that optimization of optical systems has a specific problem, an ill-

conditioning of the Hessian matrix [3, 12, 13]. Because the Hessian matrix is ill-conditioned, deep 

multidimensional valleys on the optimization field exist. Local optimization methods do not work 

properly in this case. To solve this problem the method of conjugated gradients was proposed [12] 

but only works up to a certain point of valley complexity and then can fail. Newton methods used 

dumped least square algorithm (DLS) [3, 13] which suppresses dependable parameters but will 

come straight to the closest point of the valley bottom instead of the minimum. Both methods give 

some relief to the stated problem, but a more deep consideration must be taken. This paper 

demonstrates that a very specific method of traveling through the bottom of the valleys has to be 

developed to reveal a structure of the merit function. This method leads to a minimum rather than 
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to the closest merit function valley bottom. It then reveals saddle points and leads to a new 

minimum sequentially paving a way to achieving a systematic multi-extremum search. 

 

  1. Objective for optimization. Signature features of the merit function landscape. 

 

   As an example, a ZEBASEV K_002 20x microscope objective was chosen for optimization. Its 

layout is shown in Fig. 1. 

 

 

 

 
 

a)    Objective layout. 

 
b)   Zoomed view. 

Fig. 1 Microscope objective K_002 from ZEBASEV. 

 

The optical prescription is shown in the Table 1. All glasses are of Schott preferred type from the 

2019 catalog. The eight optimization parameters are marked with the symbol “v” - six radiuses 

and two air gaps. In the proceeding text, radiuses will be denoted as Ri and air gaps as Ti. In order 

to keep the lens manufacturable, avoid thin edges, and negative air gaps and other problems, 

optimization parameters have the following constraints. 

       

                                       abs(R2) >= 10.0 mm, 

                                       abs(R3) >= 7.7mm, 

                                       abs(R4) >= 11.0 mm, 

                                       abs(R5) >= 8.0mm, 

                                       abs(R7) >= 4.0 mm, 

                                       abs(R8) >= 3.0 mm, 

                                       4.0 mm < T6 < 8.2 mm, 

                                       T9 >= 0.3 mm.                                                        (1) 

 

  The aperture stop (entrance pupil) is located at surface 1. The Entrance pupil diameter is 8 mm 

and the objective operates with F# = 1.02 at the image space. Spot diagrams at three image heights: 

0.4 mm (object height 8 mm), 0.2 mm (object height 4 mm) and 0 mm are shown in Fig. 2. The 

size of spots are shown in microns. The size of the square field in Fig. 2 is 20 um while all the 
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remaining spot diagrams in the paper are 10 um. To reduce computational burden associated with 

raytracing derivatives test optimization was made at a single wavelength of 0.587 um.  

 

Table 1 Optical prescription of the K002 objective. 

 

     Surface      Radius    Thickness   Material             Semi-Diam. 

      OBJ      Infinity   162.8140  

       STO      Infinity       0.0000                                       4.0 

         2     25.8691  V       2.6182    K10 

         3      -7.9612  V       1.0414    SF1 

         4    -26.2169  V       0.1524    

         5      11.3792 V       2.1590    N-SK5 

         6       Infinity       6.7313  V     

         7        4.5770  V       2.5908    N-SK5 

         8      -3.0002   V                                     0.7874    F5 

         9       Infinity                                    1.4882  V    

        10       Infinity                                    0.1778    N-K5 

        11       Infinity       0.0000  

     IMA       Infinity   

 

 
Fig. 2 Spot diagrams. 

 

    To estimate the image quality, each beam consists of 79 rays (5 rays at the pupil radius) for each 

field point were raytraced. The criterion of optimization, C, was a sum of squared lateral 

aberrations plus constrains violation penalty function.  
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                                   C=∑ { ∑ [(79
𝑖=1  𝑥𝑖 − 𝑥00𝑚)^2 + (𝑦𝑖 − 𝑦00𝑚)^2]} + 𝑃;3

𝑚=1           (2) 

 

where m is beam number, xi -x ray coordinates at the image plane, yi- y coordinates, x00m – 

paraxial x image coordinate (for all beams x00m=0.0 mm) and y00m -paraxial y image coordinates 

at the image plane ( y000= 0.0 mm; y001= 0.2 mm and y002= 0.4 mm). So, criterion C depends on 

both lateral aberrations and current magnification. P is a penalty function which is zero inside 

constraints area and grows fast in the case of constraint violation. 

For radii: 

                  

                                       P= 0.0 inside constraints and 

                                       P= 0.25*(RIConstraint-RI) ^2 outside constraints                       (3a) 

For airgaps: 

                                       P= 0.0 inside constraints and 

                                       P= (TIConstraint-TI) ^2 outside constraints                                 (3b)              

  

 where RIConstraint- constraint radii and TIConstraint – constraint thicknesses.  For the ZEBASE 

K_002 objective, C= 6.08E-4, indicating that the lens is well optimized. Attempts for further 

improvement with ZEMAX local optimizations (DSL or Orthogonal descent resulted in wobbling 

around this point without sensible criterion improvements. A quadratic model of C in the vicinity 

of the start point can help reveal the reason of such local optimization behavior. First and second 

derivatives of the criterion function were calculated using the finite difference method. The use of 

radii in the optimization makes it impossible to overstep the sign barrier. So, curvatures and air 

gaps will be used as optimization parameters. For derivative calculations, air gap increments were 

5 um and increments for curvatures were 0.00002.  The quadratic model of the criterion C is 

 

                               C(xi) = C0 + gT(xi)*(Δxi) +0.5*( Δxi
T)Q(Δxi) ;                                       (4) 

 

where gT is transposed vector of first derivatives, Δxi – vector of parameter increments, and Q is 

Hessian matrix of second derivatives. The Hessian matrix has a diagonal symmetry. For such 

matrices, linear algebra states that rotations of coordinate system make matrix Q diagonal or 

 

                             C(ui)= C0+ ∑ 𝑔𝑢𝑖 ∗ Δui8
𝑖=1  + 0.5 ∗ ∑ Ei ∗ (Δui) ^28

𝑖=1                               (5) 

 

where Δui parameters increments in rotated coordinates system, gui are first derivatives in rotated 

coordinate system, and Ei eigen values of the Hessian matrix. For the optical prescription (Table 

1) Eigen values are shown in the Table 2. 

 

Table 2 Eigen values. 

Number    1     2      3     4       5       6      7      8 

Eigen 3.67E+5 3.00E+2 1.98E+1 1.90E+2 2.54E-1 1.57E-1 6.67E-4 5.72E-6 

 

Derivatives of variables in the rotated coordinates system are shown in the Table 3. 
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Table 3 Derivatives. 

Number    1     2      3     4       5       6      7      8 

Derivat. -9.2E-2 3.64E-5 -1.3E-3 2.9E-3 -1.6E-4 5.4E-4 2.2E-4 1.4E-4 

 

   The two last eigen values are very small indicating that the Hessian matrix is ill-conditioned. 

Across the six variables in the rotated coordinate system, the criterion function will be a fast-

growing narrow parabola (Eq. (5)) and along the last two variables, the criterion landscape is some 

kind of slow changing valley. Fig. 3 shows a criterion C(R2, R3) contour map in the area of the 

optimization starting point of  (Table 1) with this valley.  

 

 
Fig. 3 Contour map of the criterion C in the vicinity of the starting point. 

 

II. Classical local optimization methods.  

 

 There are two basic methods used in local optimization of nonlinear functions: gradient descent 

method [3, 12, 13] and Newton methods [3]. In our case, consequent gradient vectors (X0X1 and 

X1X2) will be counter collinear (Fig. 3). Gradient method begins to oscillate and stop at some point 

close to the valley bottom. The position of this point depends on the location of starting point X0. 

 Criterion of the Newtonian dumped least-square method (DLS) is 

 

                  {∑ [gui + Ei ∗ (Δui) 8
1 ]} ^2+δ*∑ (Δui)^28

1 =min,                                              (6)  
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or in the other words the squared sum of first criterion derivatives plus the weighted Euclidean 

norm of the step will be a minimum. δ is damping constant. As in a gradient method optimization, 

steps will be repeated while recalculating the quadratic model of Eq. (5) until convergence. The 

solution at every step for each orthogonalized parameter is 

                           Δui  = (- gui*Ei)/( Ei^2 + δ)                                                                     (7) 

hence with any Ei close to zero (ill conditioned Hessian matrix) solutions still exist. DLS is tending 

to converge toward the closest to starting point valley bottom point either. 

 

III. Proposed optimization strategy to operate on the perplexed merit function landscape. 

 

The vicinity of each minimum (Fig. 4) is encircled with equimagnitude surfaces (surfaces 

having the equal value of the optimization criterion). Equimagnitude surfaces bulge out of 

minimums. At some point S, with criterion value CS, equimagnitude surfaces will meet each other.   

 

 
Fig. 4 Multi-extremum search through the saddle point. 

 

If we will go over the normal to the equimagnitude surfaces at the point S in both directions, we 

will enter equimagnitude surfaces encircling minimums (surfaces CA and CB). The value of 

criterion will be less than CS for any small step in both sides. It is possible only if the gradient at 

the point S is zero and eigen value of the eigen vector E1 parallel to the normal is negative. At the 

point S both equimagnitude surfaces have common tangential hyperplane 𝞨. All points at this 

hyperplane are located outside equimagnitude surfaces CA and CB and have a criterion value lager 

than CS. Hence, eigen values in this hyperplane are positive. So, at the point S first derivatives are 

zero, one eigen value negative while others are positive [9]. Such point is the saddle point of the 

Morse one type. Saddle points are separating areas of attraction to the neighboring minimums. The 

special roll of the saddle points in the stationary point networks was noticed at the first time in 

Ref. [14]. 

A gradient curve is a curve orthogonal to the equimagnitude surfaces at any point. Gradient 

curve ASB follows through the saddle point S. All other gradient curves connecting minimums A 

and B (for example curve 𝞧1 ) will inevitably step out of equimagnitude surfaces CA and CB and 

enter areas with criterion lager than CS. So, the ASB curve has the lower maximum value of 
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criterion besides the other gradient curves connecting minimums A and B. In other words, it is the 

path of slower growth leading from the minimum A toward saddle point and the path of slower 

descent toward minimum B. Merit function valleys are those paths of slower growth/descent.  

Moreover, there is no guarantee that any gradient curve originated from the minimum A rather 

than ASB will connect minimums. For example, curve 𝞧2 will not do so. Therefore, merit function 

valleys (ASB) are the only reliable path from the minimum A to the minimum B. In this paper 

starting from the initial point O, the local optimization will lead to some point at the closest valley 

bottom (point V in the Fig. 4). Then, the optimization will travel over the valley bottom until it 

will reach local minimum (point A). Further travel over the valley bottom leads to the saddle point. 

After that travel over the valley will lead to the next minimum. From this minimum, the 

optimization will pave the valley to a new saddle point and so on. By reaching constraints surface 

the closest minimum on the surface will be searched. If this minimum is separated from the 

previous one with the saddle point it will be an entrance to a new valley on the way back to the 

optimization space. This new valley will lead to a new minimum. Such tactics will be used in this 

paper. But in general, multi-extremum optimization has to be made on the constraint surface and 

all new valleys investigated.  

Travel over the valley bottom will be performed in repeated cycles. Each cycle begins with 

DLS correction to the valley bottom. At the DLS step, the criterion C0 will be calculated and using 

raytracing, finite differences technique vector g of derivatives and Hessian matrix Q of Eq. (4). 

Then using MATLAB, the eigen function will be calculated yielding eigen vectors Vi and eigen 

values Ei.  The DLS step of Eq. (7) will be applied to the first six orthogonalized parameters and 

will not be applied to the last two dependable parameters at all. So the DLS step will lead to the 

closest point at the bottom of valley where derivatives across strong variables ui have to be zero 

(vertex of fast parabolas) but derivatives over weak variables with small eigen values can have 

some small value (slow growth or descent). The next operation will be a step over eigen vector 

providing the lower criterion increment. This lower criterion increment can be negative indicating 

descent to the minimum. Or it can be positive indicating travel over valley toward the saddle point. 

The optimization cycle will be repeated paving the path over the stationary points network. 

    In Ref. [9] the saddle point detection method (SPD) was proposed. In the SPD method, several 

arbitrary directions from the local minimum are chosen. In each direction a step will be made and 

then minimum of the criterion at the hyperplane orthogonal to the chosen direction will be found. 

After that a new step will follow from the minimum at the hyperplane and so on. Those minimums 

constitute the SPD curve. The maximum of the criterion over successful SPD curves will be the 

saddle point. The search in directions located within a wide enough solid angel will be successful. 

Searches in other directions may not. In this paper, saddle point optimization directions are better 

defined as directions of slowest growth (toward eigen vectors having a reasonably small eigen 

value). 

 

 

IV. Travel over R2 valley. 

 

To travel over the valley, the leading variable will be chosen. It will prevent the optimization 

from wobbling. In this paper, the first leading variable will be a surface number two curvature and 

travel begins in the direction of increasing R2 curvature. All eigen vectors with negative 
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projections on the first optimization parameter (R2 curvature) will be rotated 180o. Step in the 

curvatures/air gap space was experimentally chosen as 0.003. With travel over valley in the 

direction of increasing curvature R2 criterion C at the beginning decreases until it reaches 

minimum with C=5.25E-4 and then increases until it will reach R3 (radius  -7.7 mm) and T6 (4 

mm) constraints surface with C=1.65E-3 without passing saddle points. The layout and spot 

diagrams at the R2 valley minimum are shown in the Fig. 5 and optical prescription in the Table 

4. 

Table 4 R2 valley minimum. 

 

     Surface      Radius    Thickness   Material             Semi-Diam. 

      OBJ      Infinity   162.8140  

       STO      Infinity       0.0000                                       4.0 

         2     22.4880        2.6182    K10 

         3      -8.1862        1.0414    SF1 

         4    -28.3326         0.1524    

         5      11.5102        2.1590    N-SK5 

         6       Infinity       6.7163     

         7        4.4972       2.5908    N-SK5 

         8      -2.9996                                   0.7874    F5 

         9       Infinity                                    1.3877    

        10       Infinity                                    0.1778    N-K5 

        11       Infinity       0.0000  

     IMA       Infinity   

 

 
a) R2 valley minimum layout. 
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c) Spot diagrams. 

Fig. 5 R2 valley minimum. C=5.25E-4. 

 

  To get some perception on the length of this valley let’s look at the bottom points with slightly 

higher criterium C=5.3E-4. The difference in image quality (spot diagrams) between points having 

C=5.25E-4 and C=5.3E-4 look indistinguishable. Here is the point with lager R2 value has 

C=5.3E-4. 

 

Table 5 Optical prescription at the point of the R2 valley with C=5.3E-4. Higher R2 value. 

 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     23.9823        2.6182     K10 

         3      -8.0991       1.0414     SF1 

         4    -27.6506         0.1524     

         5      11.4687       2.1590     N-SK5 

         6       Infinity       6.7265      

         7        4.5293       2.5908     N-SK5 

         8      -2.9998                                  0.7874     F5 

         9       Infinity                                    1.4559     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    
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                                                     Fig. 6 Spot diagrams. 

 

 Here is the point with lower R2 value and again the same C= 5.3E-4. 

 

Table 6 Optical prescription at the point of the R2 valley with C=5.3E-4. Lower R2 value. 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     21.3671        2.6182     K10 

         3      -8.2355       1.0414     SF1 

         4    -28.9572         0.1524     

         5      11.4951       2.1590     N-SK5 

         6       Infinity       6.6639      

         7        4.4990       2.5908     N-SK5 

         8      -2.9996                                  0.7874     F5 

         9       Infinity                                    1.3461     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    
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b) Spot diagrams. 

Fig. 7 Point at the R2 valley with C=5.3E-4. Lower R2 value. 

 

There is a sensible difference of 2.5 mm in radius R2 between two C=5.3E-4 points, but not 

any visible difference in spot performance. So, the minimum is not just a point in the parameter 

space but rather an area with a size that depends on the requirements of the criterion performance. 

 

V. Search for a deepest point in the R2 valley vicinity. 

 

    The R2 valley minimum that is shown in Table 4 (Fig. 5) was found by traveling over the 

criterion valley in the direction of R2 radius decrease. To investigate the vicinity of R2 valley 

minimum for the deepest solution, a new search was conducted. Every eigen vector increment ΔCi 

of the quadratic form of Eq.(5) was analyzed in both directions, the direction of i-th eigen vector 

and the opposite direction. The step was performed in the direction which gave the deepest 

decrease of the criterion. After several steps the point with criterion C=5.17E-4 and spot diagrams 

shown in Fig. 8 was found. 
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Table 7 Optical prescription at the deepest minimum with C=5.17E-4. 

 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     24.4562       2.6182     K10 

         3      -8.2221       1.0414     SF1 

         4    -26.7133        0.1524     

         5      11.7542       2.1590     N-SK5 

         6       Infinity       7.0579      

         7        4.3285       2.5908     N-SK5 

         8      -2.9995                                  0.7874     F5 

         9       Infinity                                    1.3086     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    

 

 
                                                     Fig. 8 Spot diagrams. 

 

VI. Travel to the R7= 4 mm R8= -3 mm constraints surface. Search from R7/R8 constraints 

wall to the opposite side. 

 

The R2 valley search in the direction of decreasing R2 ended at the R3= -7.7 mm, T6=4 mm 

constraints surface without showing a saddle point. So, further search in this direction is not 
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promising. Another constraints surface closest to the minimum of the R2 valley (Table 4) is 

R7=4mm and R8= -3 mm surface. Travel over the direction of the R7 reduction at first reveals a 

minimum with C= 5.17E-4. The absence of saddle point indicates that we are still in the same 

valley, but just proceeding deeper. This deeper minimum will be conditionally marked as another 

minimum #2 to simplify perception of the search scheme.  The optical prescription of the minimum 

#2 is shown in Table 8. Moreover, the optical prescription of this minimum and the image quality 

are very close to the deepest point at the R2 valley shown in the Table 7. This gives some assurance 

of the reliability of the proposed method.  

 

Table 8. Optical prescription of the minimum number 2 with C=5.17E-4. 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     24.4555       2.6182     K10 

         3      -8.2139       1.0414     SF1 

         4    -26.7572        0.1524     

         5      11.7407       2.1590     N-SK5 

         6       Infinity       7.0390      

         7        4.3406       2.5908     N-SK5 

         8      -2.9995                                  0.7874     F5 

         9       Infinity                                    1.3193     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    

 

Further travel reveals a saddle area with criterion C= 5.28E-4 which is close to landing point at the 

constrains surface. Then at the transition zone, where penalty function takes it power, all eigen 

values turn out positive and very close to this landing point the minimum is found with criterion 

C=5.26E-4. The optical prescription is shown in the Table 9. 

Let’s step slightly out of the R6 and R7 wall inside the optimization space to neutralize penalty 

functions influence on eigen vectors. A 3 um change in R6 and R7 will be enough. Eigen vectors 

are shown in the Table 10. The first column are increments of criterion along eigen vectors with 

the step S=0.003. Eigen vector projections on coordinate axis’s of prescription parameters are 

shown as V1-V8. From Table 10, is clear that for the lower increment dC leading out of the 

constraints surface radius is R8 (V6 are projections of the eigen vector on the radius #8). So, 

stepping out of the constraints surface we are in the R8 “tube” which is guiding us to the positive 

values of the R8. Traveling over the R8 “tube” passed saddle point with criterion value C= 1.22E-

3 and hit the opposite R7= 4mm R8= 3mm constraints surface at the point with C=6.98E-4. The 

optical prescription at the landing point is shown in the Table 11. 
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Table 9. Optical prescription at the minimum of criterion at the R7-R8 surface. C=5.26E-4. 

 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     22.3243       2.6182     K10 

         3      -8.5273       1.0414     SF1 

         4    -27.2037       0.1524     

         5      11.7920       2.1590     N-SK5 

         6       Infinity       7.4447      

         7        3.9996       2.5908     N-SK5 

         8      -2.9996                                 0.7874     F5 

         9       Infinity                                    0.9258     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    

   

                                                                                                               Table 10. Eigen vectors.                               

  dC  V1   V2   V3    V4   V5    V6    V7 V8 

1 1.6E00 4.6E-1 2.4E-1 -6.6E-1 5.4E-1 8.8E-2 1.1E-3 3.8E-3 1.4E-2 

2 9.0E-4 -4.2E-1 4.1E-2 1.3E-1 3.6E-1 8.2E-1 2.4E-1 -2.3E-2 1.9E-2 

3 7.6E-4 -3.8E-1 8.9E-1 3.0E-2 -1.4E-3 -2.4E-1 3.0E-3 1.4E-4 -6.6E-3 

4 -2.5E-5  6.5E-1 3.8E-1 3.5E-1 -3.6E-1 4.2E-1 2.6E-2 -1.7E-2 2.8E-2 

5 3.2E-5  2.1E-1 -1.1E-2 6.5E-1 6.6E-1 -2.8E-1 1.3E-1 2.0E-2 2.5E-2 

6 4.6E-6 -3.8E-2 -1.4E-2 -1.0E-1 -9.1E-2 5.2E-3 9.7E-1 6.7E-2 2.0E-1 

7 1.3E-6  1.7E-2 7.4E-3 -6.0E-4 1.3E-3 2.9E-2 1.9E-1 1.8E-1 -9.7E-1 

8 6.0E-7  5.0E-3 -6.4E-3 -5.1E-3 7.7E-3 -2.7E-2 1.0E-1 -9.8E-1 -1.6E-1 

 

Table 11. Optical prescription of the landing point at the R7= 4.0 mm R8= 3.0 mm wall. 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     19.5445       2.6182     K10 

         3      -8.5775       1.0414     SF1 

         4    -25.7804       0.1524     

         5      11.8416       2.1590     N-SK5 

         6       Infinity       7.3536      

         7        3.9998       2.5908     N-SK5 

         8        3.0000                                 0.7874     F5 

         9       Infinity                                    0.6345     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    
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Finally, optimization over the valley with leading variable T6 will find a minimum with 

C=6.9E-4.  The optical prescription is shown in Table 12 and the layout and spot diagrams are 

shown in Fig. 9. 

 

Table 12 Optical prescription at the minimum number 3. 

 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     21.6736       2.6182     K10 

         3      -8.3989       1.0414     SF1 

         4    -24.1668       0.1524     

         5      11.2879       2.1590     N-SK5 

         6       Infinity       7.3967      

         7        3.9993       2.5908     N-SK5 

         8        3.0000                                 0.7874     F5 

         9       Infinity                                    0.5524     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    

 
 

a)  Spot diagrams. 
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b) Layout. 

Fig. 9. Optimal solution at the constrains wall R7= 4.0 mm and R8= 3.0 mm. C=6.9E-4. 

 

VII. Navigation from T6=8.2 mm R8= -3 mm constraint surface to a new minimum. 

 

Travel over the main valley in the direction of R2 growth ended at the T6 8.2 mm, R8=-3mm 

constraint wall. Search for the minimum at the wall opens a new R5 “tube” (valley). Short travel 

found a new minimum with criterion C= 6.08E-4 shown in the Fig. 10 with optical prescription in 

the Table 13. A new valley starting from the minimum number 4 is leading to the R7=4.0 mm, 

R8=3.0 mm constraint surface and then to the minimum number 3 (Fig. 11). 

 

Table 13. Optical prescription at the minimum number 4. 

     Surface      Radius    Thickness    Material             Semi-Diam. 

      OBJ      Infinity   162.8140   

       STO      Infinity       0.0000                                        4.0 

         2     61.4631       2.6182     K10 

         3      -7.7289       1.0414     SF1 

         4    -19.0863       0.1524     

         5      12.1859       2.1590     N-SK5 

         6       Infinity       8.1949      

         7        3.9994       2.5908     N-SK5 

         8       -2.9992                                0.7874     F5 

         9       Infinity                                    1.2096     

        10       Infinity                                    0.1778     N-K5 

        11       Infinity       0.0000   

     IMA       Infinity    

 

 
b) Layout. 
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c) Spot diagrams. 

Fig 10 Optimal solution on the way out of T6-R8 constrains surface with C=6.08E-4. 

 

VIII. Navigation summary.    

Here is an illustrative summary of travel through the valleys maze. 

 
Fig. 10 Navigation through merit function valleys maze. 
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VIII. Conclusion. 

 

In this paper was shown that local minimums in optimization of even moderate complexity 

optical systems are located over merit function valleys and specific algorithms for traveling over 

such valleys were proposed. No sensible difference in the criterion values over several mm’s in 

radii or air gaps at valleys bottom was found. So these minimums can not be considered as some 

points in the multidimensional optimization space but are areas at the valley bottoms. Sometimes 

these valleys are so long that the choice of a solution can be based on manufacturability/cost 

criterions. These extended valley areas of solutions do not relax tolerances because at every point 

a fine combination of prescription parameters is required. A special role of saddle points as a point 

of separation of attraction areas to neighboring minimums was clarified. It was shown that the 

gradient curve connecting neighboring minimums through the saddle point has a lowest maximum 

value of optimization criterion besides other such curves connecting these minimums. So, these 

gradient curves are the path of the slowest growth/descent and therefore are the merit function 

valleys. An efficient algorithm to travel over these valleys from the one minimum to a saddle point 

and further to a new minimum was proposed. 

Practical optimization in lens design is associated with number of constraints on parameters. 

In the constrained optimization space, valleys of the criterion function can avoid mutual 

intersections. Connections between valleys can be found on the constraint surfaces. Local 

minimums at the constraint surfaces will be valley footprints. Each new minimum will be an 

entrance to the new valleys/tunnels leading to other criterion minimums. Results of multi-

extremum optimization of the microscope objective demonstrated an efficiency of the proposed 

algorithms. Extended work with optimization of other type of lens architectures [15] has to be 

preformed to mature the algorithm. The relationship between Seidel aberration theory [16] and 

multi-extremum optimization results has to be clarified as well. 

Optimization algorithms required calculations of the first and second derivatives of the 

criterion in regard to optimization parameters. In this research, raytracing tests of derivatives were 

used. However, in the future analytical derivatives tests [17, 18] can improve the accuracy and 

accelerate proposed optimization procedures. The proposed optimization algorithms in this paper, 

are associated with extended computer burden and cannot be recommended to lens designers for 

everyday use. But further progress in computer CPU’s clock speed together with implementation 

of multiple core parallel processing will probably make it possible to use this method of global 

optimization in commercial lens design software soon enough. 
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